
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  20 ( 1 9 8 5 )  4 3 1 - 4 3 7  

Interfacial effects in carbon-epoxies 
Part 2 Strength and moclu/us with short random fibres 

A. R. SANADI,  M. R. PIGGOTT 
Department of Chemical Engineering and Applied Chemistry, University of Toronto, 
Toronto, Ontario M5S 1A4, Canada 

Random carbon fibre reinforced epoxy resin sheets have been prepared and tensile tested. 
The strengths and Young's moduli varied with fibre volume fraction and fibre length, but 
the values obtained were somewhat less than slip theory and shear lag theory would indi- 
cate. A new theory of slip, taking account of the angles between fibres and applied stress, 
but neglecting fibre-fibre interactions, predicts strengths and Young's moduli somewhat 
better. 

1. Introduction 
In randomly aligned short fibre composites, a good 
bond at the interface between fibres and matrix 
plays a major role in two processes: (1) transfer- 
ring stress to fibres aligned close to the direction 
of any applied stress, and (2) ensuring that gaps 
do not open up between the matrix and fibres 
aligned at large angles to the stress directions. 

Most of the studies on this type of composite 
have been carried out on very short (0.2 mm) 
fibre reinforced thermoplastic mouldings. Modulus 
is apparently not much affected by the bond 
between the fibres and matrix [1], but the strength 
is increased by good bonding [1]. However, a 
decline of modulus with time under load with a 
glass-polyester (thermoset) has been ascribed to 
loss in adhesion [2]. The reduction in strength 
when the composite is immersed in water is prob- 
ably also due to loss of adhesion [3]. 

Strength and modulus are usually linear func- 
tions of  fibre volume fraction [2-6]  for reinforced 
thermoplastics and thermosets, though Weiss [7] 
observed a linear dependence for strength in 
injection moulded samples, which had some fibre 
alignment, but a nonlinear decrease in strength 
with fibre volume fraction for compression moul- 
ded samples, which had more randomly oriented 
fibres. 

Stress-strain trajectories are normally curved 
[3, 4, 8], although Lavengood [6] reports linear 

stress-strain trajectories for (long) glass fibre mat 
reinforced epoxies. 

The strengths of random fibre reinforced 
plastics can be less than the matrix strength [7, 9], 
and the effect of fibre aspect ratio on strength has 
been reported to be quite small [9] for aspect 
ratios ranging from 60 to 400. 

It is implicit in theoretical treatments that we 
can treat the stress transfer from matrix to short 
fibres independently of the effect of the angle 
between the applied stress and the fibre direction 
[10, 11]. Thus, we write for composite Young's 
modulus, F~ e : 

F e = X 1 x 2 g f f E f  -1" g m E  m (1) 

and for strength, Oeu: 

Ocu =" X 3 N 4 V f o f u  Jr- V mGmu (2) 

where V e and Vm are fibre and matrix volume 
fractions, Ef and E m the corresponding Young's 
moduli, and Oru and Omu the strengths. The 
factors representing the effect of fibre orientation 
for modulus and strength are X1 and ?(3. For fibres 
randomly directed in a plane Xl and X3 are usually 
taken to be 3/8, and for the three dimensionally 
random case, 1/5. The factors used to account for 
the fibre length are Xz and X4.~Shear lag analysis 
gives: 

tanh (ns) 
x2  = 1 ( 3 )  

ns 
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and when account is taken of fibre slip [14], we 

get: Se 
X4 = 1 - - - -  (4) 

2s 

for fibre aspect ratios, s, greater than the critical 
aspect ratio, Se, and: 

s 
x4 = - -  (5) 

2se 

for s < s e. In Equation 3 

n 2 = 2Era (6) I D \  
G (1 + vm) in [ ~_Lt] 

~vd 

where u m is the Poisson's ratio of the matrix, and 
P~ is the fibre packing factor. (For aligned fibres, 
hexagonally packed Pf = 27r/31/2). 

Thus the equations predict a linear variation of 
modulus and strength with fibre volume fraction, 
as indeed most of the experiments indicate. How- 
ever, curved stress-strain trajectories are not pre- 
dicted, and the strength analysis is not compatible 
with that for the modulus. 

In the experiments described here, the various 
factors contributing to strength and modulus are 
examined in a consistent and planned fashion as 
described previously for the aligned fibre case 
[15]. In addition, slip theory is extended to 
include the random fibre case, avoiding the 
assumption that the effects of short fibres, and 
fibre directions, are independent. 

2. Experimental method 
Union Carbide pitch precursor P55S fibres were 
used in this work. They were cut to 0.5, 1, 2, and 
3 mm lengths for these experiments. As received, 
they were sized, but before use some were desized 
using propanol, others were desized and then 
etched with 70% nitric acid for 6 h, and still 
others were coated with silicone oil (Dow Coming 
200). The critical lengths of these fibres were 
measured as described previously [15]. 

The resin matrix Was Shell Epon 815, with 19% 
Ancamine 1482 added as hardener. The resin was 
cured at IO0~ and then post cured at 160~ 
for 4 h. 

The mats were impregnated with the resin 
mixture dissolved in an equal amount of methylene 
chloride. Moulding was carried out after allowing 
the methylene chloride to evaporate. A pressure of 
0.7 MPa was applied to the mould after the resin 
had been allowed to gel. 

4 3 2  

Testing was carried out as described previously 
[15]. In addition, the fibres were recovered from 
the composite and their lengths measured, as 
described previously. 

3. Experimental results 
To check for randomness, tests were carried out at 
30 ~ , 60 ~ and 90 ~ to the principal direction, as 
defined by the longer edges of the mould. The 
average strengths, measured on composite made 
with sized fibres, and Vf = 0.15, were the same 
within +- 6%. 

During processing about 10% of the fibres were 
broken into fragments, Fig. 1, if we assume about 
two fragments for each fib-re broken. (For example, 
for the 2 mm fibres about 7% had lengths less 
than 0.75 ram, 14.8% less than 1.25 ram, 16.5% 
less than 1.75 ram, and 20.7% less than 1.95 cm.) 

The Young's moduli of the composites in- 
creased approximately linearly with fibre volume 
fraction, Fig. 2. The slope of the lines depended 
on fibre surface treatment, being greatest for the 
sized fibres and least for the silicone coated ones. 

The modulus increased monotonically with 
fibre length, Fig. 3, up to 2 ram; increasing the 
fibre length to 3 mm had no significant effect. All 
the stress-strain curves were linear. 

The tensile strengths increased monotonically 
with fibre volume fraction, Fig. 4. The highest 
strengths were obtained with the sized fibres, and 
the lowest with the silicone coated ones. At 
Vf =0 .15 ,  the sized, desized and etched fibres 
all gave composites with about the same strengths. 
Strengths increased monotonically with increase 
in fibre length, Fig. 5, though the 2 mm and 3 mm 
fibre composites, had about the same strengths. 

With the 2 mm long fibres the breaking strains 
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Figure 1 C u m u l a t i v e  d i s t r i bu t i on  of  f ibre  lengths ,  Vf = 

0.30.  
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Figure 2 Young's moduli of composites made with 2 mm 
long fibres. 

o f  the composites decreased with increasing fibre 
volume fract ion,  f rom slightly above the fibre 

breaking strain (0.5%) to slightly below it, Fig. 6. 
The silicone coating reduced the composi te  
breaking strain, for Vf = 0.2 to 0.4, and the 
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Figure 3 Effect of fibre length on Young's moduli or" com- 
posites with Vf = 0.30. 
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Figure 4 Tensile strengths of composites made with 2 mm 
long fibres. 

breaking strain increased approximate ly  l inearly 
with fibre length in the range of  0.5 to 3 ram, for 

~5 = 0.3. 

4. Discussion 
Fibre breakage, Fig. 1, is no t  occurring to any 
great ex tent  in composite manufacture ,  so in our 
discussion we will use the nomina l  fibre lengths. 

The modul l  o f  the composites were linear 
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Figure 5 Strength against fibre length, V I = 0.30. 
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Figure 6 Breaking strains of 
composites made with 2 mm 
long fibres. 

functions of  Vf, Fig. 2. Thus: 

E e = AEFfE f-I- V m ~  m ( 7 )  

where A E is a parameter which depends on fibre 
length and orientation. Values of  AE estimated 
from Fig. 2 are given in Table I. 

Comparing Equation 7 with Equation 1, we 
expect 

AE = XlX2 (8) 

Values for X1 and X2 are also given in Table I, and 
it can be seen that Equation 8 is not obeyed. 
Agreement in the case of  the sized fibres requires 
that X1 be reduced to 0.21. This, however, still 
leaves a significant error in the desized fibre case, 
and a large error in the coated fibre case. Also, 
the variation of  modulus with fibre length is not 
satisfactorily accounted for with X1 = 0.27, Fig. 3. 
Thus shear lag theory, while in agreement with the 
linear stress-strain curves obtained, does not 
account very well for the modulus results. 

This problem is not encountered when slip 
theory is used for the strength results at Vf = 0.15. 
The dashed lines in Fig. 4 were drawn according 
to the equation: 

VmEmofu 
Oeu = A s V f o f u  + (9) 

Ef 

and are consistent with the results for the silicone 
coated fibres and the sized fibres at V~ = 0.15 

and 0.20 only. For the etched and desized fibres 
Equation 9 breaks down even before Vf reaches 
0.20. If we estimate A s from the values at Vf = 
0.15 and using the critical lengths given in the 
table [15] we get the results shown in Table I. 
Comparing Equations 9 and 2 we expect: 

As = X3X4 (10) 

In Table I, X3 and X4 values are given; the agree- 
ment in this case is quite good. However, at higher 
volume fractions the results fall below the values 
given by the slip theory, but if we use X3 = 0.27 at 
Vf = 0.3, we obtain a theoretical curve which is 
reasonably close to the experimental one, Fig. 5. 
At this volume fraction we find that the composite 
breaking strains increase approximately linearly 
with fibre length, Fig. 7. 

The breaking strains of  the composites made 
with the coated fibres, Fig. 6, are less than those 
made with the sized fibres. This contrasts with the 
aligned fibre case [15], where the situation is 
reversed. 

4.1. Slip theory f o r  random composites 
Since the assumption that orientation effects and 
short fibre effects act approximately independently 
gives moduli which are too high, even for sized 
fibres, it is worth investigating whether slip theory 
[16] can be adapted more rigorously to the 

T A B L E I Constants governing strength and modulus against fibre volume fraction plots (fibre length 2 mm) 

Fibre Critical Experiment Modulus constants Experiment Strength constants 
surface length AE As 
treatment (mm) • • X,• X3 • • 3 • 

DesizedSized 00"73.91 2253 } 30/30 0.750"80 0.290"30 
Etched 0.89 24 0.38 0.93 0.35 0.38 30 0.76 0.29 
Coated 1.80 14 15 0.51 0.19 
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Figure 7 Breaking strains of composites with Vf = 0.30. 

random fibre case. To do this we will consider the 
usual single fibre model, Fig. 8. 

We let the fibre, OA be initially aligned at an 
angle 0 to the applied stress ol .  The stress will 
cause two effects: (1) an increase in the length 
of  the space occupied by the fibre from 2L to 
2L(1 + e0 ,  and (2) a rotation of  the fibre due to 
Poisson's shrinkage of  the composite. The strain 
in the composite in the direction of  the applied 
stress is denoted by el .  

To a first approximation, the distance OB 

changes from L cos 0 to OB' = L ( I  + el) cos0. 
Similarly, the distance A B  = L  sin0 changes to 
A 'B' = AB(1 -- ut2e 1) = 2L (1 -- vt2e1) sin 0 where 
u,a is the Poisson's ratio of  the sheet. The stretch- 
ing and rotation results in a strain in the fibre, er 
where 
e~ = [(1 + el) 2 cos20 + (1 --u12e) 2 sin20] l/z -- 1 

(51) 
which for small e~ reduces to: 

' e l  = e l  [5 --(1++ u12) sin~0] (12) 

This results in fibres beigg under tension for 
0 < r and compression for 0 > r where 

1 1/2 r ] 
[(i +v,2) l 

The strain eg is only applied to the centre section 
of  the fibres. Near the ends the stress, a~, falls 
approximately linearly to zero, as indicated in 
Fig. 8. In the e n d  region, x > L ( 1 - - m o ) ,  for 
fibres with q~ = 0 we have 

da~ 47 i 
- -  ( 1 4 )  

dx d 

where x is the distance from the fibre centre 
(Fig. 8), d is the fibre diameter and ~'i is the 
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Figure 8 Diagram showing fibre, OA (initial position) 
stretched and rotated to OA' by a stress applied Jn the 
direction OB. Also shown (lower left) is the variation of 
stress along the fibre. 

interfacial shear stress resulting from slip. It is 
assumed that ~'i is constant. The fraction of  
fibres that have slipped, mo is given by [16] 

Ere1 
m o =  - -  ( 1 5 )  

2sri 

where s is the fibre aspect ratio, 2Lid. 

Fibres with 0 < r will have 

m t = m o t 1 - - ( 1  +U,z)  sin20] (16) 

and those with 0 > r will have 

m c = mot(1 +u12) s in20- -1]  (17) 

arid the average stress in the fibre is 

~f0 = (18) 
/77O ; 

w h e r e m = m  t f o r 0 < r  c f o r 0 > r  
Neglecting fibre-fibre interactions, the contri- 

bution V f ~  n of  all fibres, at all angles, is obtained 
by integration: 

Vf 6~1 2 gf --f j,2 = Of 0 cos 0d0 (19) 
7]" 

which may be integrated in two .parts 

+ >; [ f : ' m t  ( l - - ' @ )  cos0d0 

(2o) 
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to give: 

g f  (~f, - 

( vf&e, 
t10(2 - - / 2 , 2  ) - -  mo 

15rr 
% [16 q} 

x (I +v,:)v2 8+4v12- -3v ]  

(21) 

We may likewise estimate the contribution of the 
fibres to the stresses in the plane of the sheet, at 
right angles to the fibre direction, Vfef2, 

2V, f;/2 VfOf2 - 7r ~f0 sin0d0 (22) 

110(1 - - 2 v 1 2 ) - - t o o ( 3 -  4v12 + 8V22) 
VeEfel 

15rr [ 
2m0(3 -- 10v,2 + 15v]2)1 

-(]- ~ u-~2) ~ ] (23) 

The matrix will also be stressed in this direction, 
since, for equilibrium 

Vf (7f2 + Vm Orn2 = 0 (24) 

We identify the composite strain with the matrix 
strain 

ezra = - -  P,2e , (25) 

and the stress-strain relations give : 

Em 
O'2m = (1 + Vm)(l -- 2Vm) 

X [(1 - -  Pm)e2m + Pro(film -b E3m)] 

(26) 

so that, substituting e2m from Equation 25, put- 
ting 6 , m  = e,,  and 63m = - -P ,361  "~Pm61,  we 
obtain: 

Eme,(1 - -  Pro) (Urn --/)12) 
02 m 7--- (27) 

(1 + /, 'm)(1 - - 2 P r o )  

Using Equations 23, 24 and 27 we find that .u,2 is 
almost entirely independent of m0, and given with 
great fidelity by 

(1 + IXVm) 
v,2 - (28) 

(2 + a) 
where 

3rrEm Vm(1 -- urn) 
c~ = (29) 

2 V f E f ( 1  + Vm)(1 --2Vm) 

For most fibre-matrix combinations, except at 
very low volume fractions, Equation 29 gives 
v12 ~--0.5. 

The composite stress-strain relation, using 
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Equations 15 and 21, and including a matrix 
contribution of gmEme 1, is 

= /vf/rf [ ~e,2s~.___~. O, ( 1-~-~" ~ 10 (2 - / ) , 2 ) - -  

( 1 6  )] } 
x (1 +/)12)  1/2 8 + 4U,2 -- 3V]2 + VraEm el 

which, for v 12 = 0.5, reduces to 

sri ] (31) 

This expression differs from the unidirectional slip 
equation [11] only by inclusion of the quotient 7r, 
and the multiplier 0.21 instead of 0.25. 

Fig. 9 shows the theoretical stress-strain 
curves for the carbon-epoxy composites used in 
the experiments. The curves have been terminated 
at the breaking strains observed. The values of 
mo as well as fibre length are indicated on the 
curves. The breaking stresses are quite close to 
the values given by the theoretical curve, Fig. 5, 
when these breaking strains are used, and the 
secant moduli fit the Young's moduli fairly well, 
Fig. 3. 

It seems clear that this theory comes closer to 
predicting the Young's moduli of these composites 
than does the treatment that considers angle and 
orientation effects separately. Thus to get the 
apparent agreement in Figs. 3 and 5, we had to 
reduce Xl and X3 to 0.27 (from 0.375). However, 
the new theory has two problems: (1) the stress- 
strain trajectories predicted are curved, while the 
experiments give linear trajectories, and (2) the 
theory lacks a criterion for determining the 
breaking strain for the composites made with very 
short fibres (s < 1.4se). It should be noted that, 
for fibres aligned normal to the direction of stress, 
the slipped length at the end of each fibre is about 
0.12 mm long for both 0.5 and 1 mm fibres at the 
breaking point of the composite. This could con- 
stitute a critical crack size criterion. 

These problems may be remedied, as indicated 
in the previous paper, by considering the f ibre- 
fibre interactions. These interactions will probably 
also reduce the rather high value of u12 that is 
predicted. 

The new theory can be extended to the case 
m o > 1, i.e. the whole fibre is slipping. In this case 

V f 6 f l  ~ 0.40VfsT" i (32) 
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Figure 9 Theoretical stress strain 
curves for short carbon fibre 
reinforced epoxies. Vf = 0.30. 
Fibre lengths (ram) and m values 
indicated on the curves. 

5. Conclusions 
Simple slip and shear lag theories do not predict 
the strengths and Young 's  modul i  o f  random,  

short  fibre composi tes  very well. A new theory ,  

based ent i rely on slip, is bet ter ,  and its deficiencies 

may  be remedied  by taking f i b r e - f i b r e  interact ions  

in to  account .  
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